Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimizing Age of Information in Wireless Uplink Networks with Partial Observations (2202.03152v3)

Published 7 Feb 2022 in cs.PF, cs.IT, cs.NI, and math.IT

Abstract: We consider a wireless uplink network consisting of multiple end devices and an access point (AP). Each device monitors a physical process with stochastic arrival of status updates and sends these updates to the AP over a shared channel. The AP aims to schedule the transmissions of these devices to optimize the network-wide information freshness, quantified by the Age of Information (AoI) metric. Due to the stochastic arrival of the status updates at the devices, the AP only has partial observations of system times of the latest status updates at the devices when making scheduling decisions. We formulate such a decision-making problem as a belief Markov Decision Process (belief-MDP). The belief-MDP in its original form is difficult to solve as the dimension of its states can go to infinity and its belief space is uncountable. By leveraging the properties of the status update arrival (i.e., Bernoulli) processes, we manage to simplify the feasible states of the belief-MDP to two-dimensional vectors. Built on that, we devise a low-complexity scheduling policy. We derive upper bounds for the AoI performance of the low-complexity policy and analyze the performance guarantee by comparing its performance with a universal lower bound. Numerical results validate our analyses.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jingwei Liu (49 papers)
  2. Rui Zhang (1140 papers)
  3. Aoyu Gong (6 papers)
  4. He Chen (109 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.