Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Rate Coding or Direct Coding: Which One is Better for Accurate, Robust, and Energy-efficient Spiking Neural Networks? (2202.03133v2)

Published 31 Jan 2022 in cs.NE and cs.CV

Abstract: Recent Spiking Neural Networks (SNNs) works focus on an image classification task, therefore various coding techniques have been proposed to convert an image into temporal binary spikes. Among them, rate coding and direct coding are regarded as prospective candidates for building a practical SNN system as they show state-of-the-art performance on large-scale datasets. Despite their usage, there is little attention to comparing these two coding schemes in a fair manner. In this paper, we conduct a comprehensive analysis of the two codings from three perspectives: accuracy, adversarial robustness, and energy-efficiency. First, we compare the performance of two coding techniques with various architectures and datasets. Then, we measure the robustness of the coding techniques on two adversarial attack methods. Finally, we compare the energy-efficiency of two coding schemes on a digital hardware platform. Our results show that direct coding can achieve better accuracy especially for a small number of timesteps. In contrast, rate coding shows better robustness to adversarial attacks owing to the non-differentiable spike generation process. Rate coding also yields higher energy-efficiency than direct coding which requires multi-bit precision for the first layer. Our study explores the characteristics of two codings, which is an important design consideration for building SNNs. The code is made available at https://github.com/Intelligent-Computing-Lab-Yale/Rate-vs-Direct.

Citations (56)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.