Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Gradient Descent with Dependent Data for Offline Reinforcement Learning (2202.02850v1)

Published 6 Feb 2022 in cs.LG and math.OC

Abstract: In reinforcement learning (RL), offline learning decoupled learning from data collection and is useful in dealing with exploration-exploitation tradeoff and enables data reuse in many applications. In this work, we study two offline learning tasks: policy evaluation and policy learning. For policy evaluation, we formulate it as a stochastic optimization problem and show that it can be solved using approximate stochastic gradient descent (aSGD) with time-dependent data. We show aSGD achieves $\tilde O(1/t)$ convergence when the loss function is strongly convex and the rate is independent of the discount factor $\gamma$. This result can be extended to include algorithms making approximately contractive iterations such as TD(0). The policy evaluation algorithm is then combined with the policy iteration algorithm to learn the optimal policy. To achieve an $\epsilon$ accuracy, the complexity of the algorithm is $\tilde O(\epsilon{-2}(1-\gamma){-5})$, which matches the complexity bound for classic online RL algorithms such as Q-learning.

Citations (2)

Summary

We haven't generated a summary for this paper yet.