Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The Exponential-Time Complexity of the complex weighted #CSP (2202.02782v1)

Published 6 Feb 2022 in cs.CC

Abstract: In this paper, I consider a fine-grained dichotomy of Boolean counting constraint satisfaction problem (#CSP), under the exponential time hypothesis of counting version (#ETH). Suppose $\mathscr{F}$ is a finite set of algebraic complex-valued functions defined on Boolean domain. When $\mathscr{F}$ is a subset of either two special function sets, I prove that #CSP($\mathscr{F}$) is polynomial-time solvable, otherwise it can not be computed in sub-exponential time unless #ETH fails. I also improve the result by proving the same dichotomy holds for #CSP with bounded degree (every variable appears at most constant constraints), even for #R$_3$-CSP. An important preparation before proving the result is to argue that pinning (two special unary functions $[1,0]$ and $[0,1]$ are used to reduce arity) can also keep the sub-exponential lower bound of a Boolean #CSP problem. I discuss this issue by utilizing some common methods in proving #P-hardness of counting problems. The proof illustrates the internal correlation among these commonly used methods.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)