Multi-domain Unsupervised Image-to-Image Translation with Appearance Adaptive Convolution (2202.02779v1)
Abstract: Over the past few years, image-to-image (I2I) translation methods have been proposed to translate a given image into diverse outputs. Despite the impressive results, they mainly focus on the I2I translation between two domains, so the multi-domain I2I translation still remains a challenge. To address this problem, we propose a novel multi-domain unsupervised image-to-image translation (MDUIT) framework that leverages the decomposed content feature and appearance adaptive convolution to translate an image into a target appearance while preserving the given geometric content. We also exploit a contrast learning objective, which improves the disentanglement ability and effectively utilizes multi-domain image data in the training process by pairing the semantically similar images. This allows our method to learn the diverse mappings between multiple visual domains with only a single framework. We show that the proposed method produces visually diverse and plausible results in multiple domains compared to the state-of-the-art methods.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.