Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the High Dimensional RSA Algorithm -- A Public Key Cryptosystem Based on Lattice and Algebraic Number Theory (2202.02675v1)

Published 6 Feb 2022 in math.NT, cs.IT, and math.IT

Abstract: The most known of public key cryptosystem was introduced in 1978 by Rivest, Shamir and Adleman [19] and now called the RSA public key cryptosystem in their honor. Later, a few authors gave a simply extension of RSA over algebraic numbers field( see [20]- [22]), but they require that the ring of algebraic integers is Euclidean ring, this requirement is much more stronger than the class number one condition. In this paper, we introduce a high dimensional form of RSA by making use of the ring of algebraic integers of an algebraic number field and the lattice theory. We give an attainable algorithm (see Algorithm I below) of which is significant both from the theoretical and practical point of view. Our main purpose in this paper is to show that the high dimensional RSA is a lattice based on public key cryptosystem indeed, of which would be considered as a new number in the family of post-quantum cryptography(see [17] and [18]). On the other hand, we give a matrix expression for any algebraic number fields (see Theorem 2.7 below), which is a new result even in the sense of classical algebraic number theory.

Citations (2)

Summary

We haven't generated a summary for this paper yet.