Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Space-Air-Ground Integrated Multi-domain Network Resource Orchestration based on Virtual Network Architecture: a DRL Method (2202.02459v1)

Published 3 Feb 2022 in cs.NI and cs.AI

Abstract: Traditional ground wireless communication networks cannot provide high-quality services for AI applications such as intelligent transportation systems (ITS) due to deployment, coverage and capacity issues. The space-air-ground integrated network (SAGIN) has become a research focus in the industry. Compared with traditional wireless communication networks, SAGIN is more flexible and reliable, and it has wider coverage and higher quality of seamless connection. However, due to its inherent heterogeneity, time-varying and self-organizing characteristics, the deployment and use of SAGIN still faces huge challenges, among which the orchestration of heterogeneous resources is a key issue. Based on virtual network architecture and deep reinforcement learning (DRL), we model SAGIN's heterogeneous resource orchestration as a multi-domain virtual network embedding (VNE) problem, and propose a SAGIN cross-domain VNE algorithm. We model the different network segments of SAGIN, and set the network attributes according to the actual situation of SAGIN and user needs. In DRL, the agent is acted by a five-layer policy network. We build a feature matrix based on network attributes extracted from SAGIN and use it as the agent training environment. Through training, the probability of each underlying node being embedded can be derived. In test phase, we complete the embedding process of virtual nodes and links in turn based on this probability. Finally, we verify the effectiveness of the algorithm from both training and testing.

Citations (66)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.