Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Lossy Planarization: A Constant-Factor Approximate Kernelization for Planar Vertex Deletion (2202.02174v1)

Published 4 Feb 2022 in cs.DS and cs.CC

Abstract: In the F-minor-free deletion problem we want to find a minimum vertex set in a given graph that intersects all minor models of graphs from the family F. The Vertex planarization problem is a special case of F-minor-free deletion for the family F = {K_5, K_{3,3}}. Whenever the family F contains at least one planar graph, then F-minor-free deletion is known to admit a constant-factor approximation algorithm and a polynomial kernelization [Fomin, Lokshtanov, Misra, and Saurabh, FOCS'12]. The Vertex planarization problem is arguably the simplest setting for which F does not contain a planar graph and the existence of a constant-factor approximation or a polynomial kernelization remains a major open problem. In this work we show that Vertex planarization admits an algorithm which is a combination of both approaches. Namely, we present a polynomial A-approximate kernelization, for some constant A > 1, based on the framework of lossy kernelization [Lokshtanov, Panolan, Ramanujan, and Saurabh, STOC'17]. Simply speaking, when given a graph G and integer k, we show how to compute a graph G' on poly(k) vertices so that any B-approximate solution to G' can be lifted to an (A*B)-approximate solution to G, as long as A*B*OPT(G) <= k. In order to achieve this, we develop a framework for sparsification of planar graphs which approximately preserves all separators and near-separators between subsets of the given terminal set. Our result yields an improvement over the state-of-art approximation algorithms for Vertex planarization. The problem admits a polynomial-time O(neps)-approximation algorithm, for any eps > 0, and a quasi-polynomial-time (log n)O(1) approximation algorithm, both randomized [Kawarabayashi and Sidiropoulos, FOCS'17]. By pipelining these algorithms with our approximate kernelization, we improve the approximation factors to respectively O(OPTeps) and (log OPT)O(1).

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.