Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 71 tok/s
Gemini 2.5 Flash 146 tok/s Pro
Gemini 2.5 Pro 46 tok/s Pro
Kimi K2 187 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The Ecological Footprint of Neural Machine Translation Systems (2202.02170v1)

Published 4 Feb 2022 in cs.CL

Abstract: Over the past decade, deep learning (DL) has led to significant advancements in various fields of artificial intelligence, including machine translation (MT). These advancements would not be possible without the ever-growing volumes of data and the hardware that allows large DL models to be trained efficiently. Due to the large amount of computing cores as well as dedicated memory, graphics processing units (GPUs) are a more effective hardware solution for training and inference with DL models than central processing units (CPUs). However, the former is very power demanding. The electrical power consumption has economical as well as ecological implications. This chapter focuses on the ecological footprint of neural MT systems. It starts from the power drain during the training of and the inference with neural MT models and moves towards the environment impact, in terms of carbon dioxide emissions. Different architectures (RNN and Transformer) and different GPUs (consumer-grate NVidia 1080Ti and workstation-grade NVidia P100) are compared. Then, the overall CO2 offload is calculated for Ireland and the Netherlands. The NMT models and their ecological impact are compared to common household appliances to draw a more clear picture. The last part of this chapter analyses quantization, a technique for reducing the size and complexity of models, as a way to reduce power consumption. As quantized models can run on CPUs, they present a power-efficient inference solution without depending on a GPU.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.