Papers
Topics
Authors
Recent
2000 character limit reached

DistrEdge: Speeding up Convolutional Neural Network Inference on Distributed Edge Devices (2202.01699v2)

Published 3 Feb 2022 in cs.DC

Abstract: As the number of edge devices with computing resources (e.g., embedded GPUs, mobile phones, and laptops) increases, recent studies demonstrate that it can be beneficial to collaboratively run convolutional neural network (CNN) inference on more than one edge device. However, these studies make strong assumptions on the devices' conditions, and their application is far from practical. In this work, we propose a general method, called DistrEdge, to provide CNN inference distribution strategies in environments with multiple IoT edge devices. By addressing heterogeneity in devices, network conditions, and nonlinear characters of CNN computation, DistrEdge is adaptive to a wide range of cases (e.g., with different network conditions, various device types) using deep reinforcement learning technology. We utilize the latest embedded AI computing devices (e.g., NVIDIA Jetson products) to construct cases of heterogeneous devices' types in the experiment. Based on our evaluations, DistrEdge can properly adjust the distribution strategy according to the devices' computing characters and the network conditions. It achieves 1.1 to 3x speedup compared to state-of-the-art methods.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.