Papers
Topics
Authors
Recent
2000 character limit reached

MFA: TDNN with Multi-scale Frequency-channel Attention for Text-independent Speaker Verification with Short Utterances (2202.01624v3)

Published 3 Feb 2022 in cs.SD, cs.CL, eess.AS, and eess.SP

Abstract: The time delay neural network (TDNN) represents one of the state-of-the-art of neural solutions to text-independent speaker verification. However, they require a large number of filters to capture the speaker characteristics at any local frequency region. In addition, the performance of such systems may degrade under short utterance scenarios. To address these issues, we propose a multi-scale frequency-channel attention (MFA), where we characterize speakers at different scales through a novel dual-path design which consists of a convolutional neural network and TDNN. We evaluate the proposed MFA on the VoxCeleb database and observe that the proposed framework with MFA can achieve state-of-the-art performance while reducing parameters and computation complexity. Further, the MFA mechanism is found to be effective for speaker verification with short test utterances.

Citations (67)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.