Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 180 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 66 tok/s Pro
Kimi K2 163 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A unified surrogate-based scheme for black-box and preference-based optimization (2202.01468v1)

Published 3 Feb 2022 in math.OC and cs.LG

Abstract: Black-box and preference-based optimization algorithms are global optimization procedures that aim to find the global solutions of an optimization problem using, respectively, the least amount of function evaluations or sample comparisons as possible. In the black-box case, the analytical expression of the objective function is unknown and it can only be evaluated through a (costly) computer simulation or an experiment. In the preference-based case, the objective function is still unknown but it corresponds to the subjective criterion of an individual. So, it is not possible to quantify such criterion in a reliable and consistent way. Therefore, preference-based optimization algorithms seek global solutions using only comparisons between couples of different samples, for which a human decision-maker indicates which of the two is preferred. Quite often, the black-box and preference-based frameworks are covered separately and are handled using different techniques. In this paper, we show that black-box and preference-based optimization problems are closely related and can be solved using the same family of approaches, namely surrogate-based methods. Moreover, we propose the generalized Metric Response Surface (gMRS) algorithm, an optimization scheme that is a generalization of the popular MSRS framework. Finally, we provide a convergence proof for the proposed optimization method.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.