Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Learning with Asymmetric Kernels: Least Squares and Feature Interpretation (2202.01397v1)

Published 3 Feb 2022 in cs.LG

Abstract: Asymmetric kernels naturally exist in real life, e.g., for conditional probability and directed graphs. However, most of the existing kernel-based learning methods require kernels to be symmetric, which prevents the use of asymmetric kernels. This paper addresses the asymmetric kernel-based learning in the framework of the least squares support vector machine named AsK-LS, resulting in the first classification method that can utilize asymmetric kernels directly. We will show that AsK-LS can learn with asymmetric features, namely source and target features, while the kernel trick remains applicable, i.e., the source and target features exist but are not necessarily known. Besides, the computational burden of AsK-LS is as cheap as dealing with symmetric kernels. Experimental results on the Corel database, directed graphs, and the UCI database will show that in the case asymmetric information is crucial, the proposed AsK-LS can learn with asymmetric kernels and performs much better than the existing kernel methods that have to do symmetrization to accommodate asymmetric kernels.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.