Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Fast Convex Optimization for Two-Layer ReLU Networks: Equivalent Model Classes and Cone Decompositions (2202.01331v4)

Published 2 Feb 2022 in cs.LG

Abstract: We develop fast algorithms and robust software for convex optimization of two-layer neural networks with ReLU activation functions. Our work leverages a convex reformulation of the standard weight-decay penalized training problem as a set of group-$\ell_1$-regularized data-local models, where locality is enforced by polyhedral cone constraints. In the special case of zero-regularization, we show that this problem is exactly equivalent to unconstrained optimization of a convex "gated ReLU" network with non-singular gates. For problems with non-zero regularization, we show that convex gated ReLU models obtain data-dependent approximation bounds for the ReLU training problem. To optimize the convex reformulations, we develop an accelerated proximal gradient method and a practical augmented Lagrangian solver. We show that these approaches are faster than standard training heuristics for the non-convex problem, such as SGD, and outperform commercial interior-point solvers. Experimentally, we verify our theoretical results, explore the group-$\ell_1$ regularization path, and scale convex optimization for neural networks to image classification on MNIST and CIFAR-10.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.