Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Improved Regret for Differentially Private Exploration in Linear MDP (2202.01292v2)

Published 2 Feb 2022 in cs.LG

Abstract: We study privacy-preserving exploration in sequential decision-making for environments that rely on sensitive data such as medical records. In particular, we focus on solving the problem of reinforcement learning (RL) subject to the constraint of (joint) differential privacy in the linear MDP setting, where both dynamics and rewards are given by linear functions. Prior work on this problem due to Luyo et al. (2021) achieves a regret rate that has a dependence of $O(K{3/5})$ on the number of episodes $K$. We provide a private algorithm with an improved regret rate with an optimal dependence of $O(\sqrt{K})$ on the number of episodes. The key recipe for our stronger regret guarantee is the adaptivity in the policy update schedule, in which an update only occurs when sufficient changes in the data are detected. As a result, our algorithm benefits from low switching cost and only performs $O(\log(K))$ updates, which greatly reduces the amount of privacy noise. Finally, in the most prevalent privacy regimes where the privacy parameter $\epsilon$ is a constant, our algorithm incurs negligible privacy cost -- in comparison with the existing non-private regret bounds, the additional regret due to privacy appears in lower-order terms.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.