Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Passing the Limits of Pure Local Search for Weighted $k$-Set Packing (2202.01248v2)

Published 2 Feb 2022 in cs.DS

Abstract: We study the weighted $k$-Set Packing problem: Given a collection $S$ of sets, each of cardinality at most $k$, together with a positive weight function $w:\mathcal{S}\rightarrow\mathbb{Q}{>0}$, the task is to compute a disjoint sub-collection $A\subseteq \mathcal{S}$ of maximum total weight. For $k\leq 2$, the weighted $k$-Set Packing problem can be solved in polynomial time, but for $k\geq 3$, it becomes $NP$-hard. Recently, Neuwohner has shown how to obtain approximation guarantees of $\frac{k+\epsilon_k}{2}$ with $\lim{k\rightarrow\infty}\epsilon_k=0$. She further showed her result to be asymptotically best possible in that no algorithm considering local improvements of logarithmically bounded size with respect to some fixed power of the weight function can yield an approximation guarantee better than $\frac{k}{2}$. In this paper, we finally show how to beat the threshold of $\frac{k}{2}$ for the weighted $k$-Set Packing problem by $\Omega(k)$. We achieve this by combining local search with the application of a black box algorithm for the unweighted $k$-Set Packing problem to carefully chosen sub-instances. In doing so, we manage to link the approximation ratio for general weights to the one achievable in the unweighted case and we obtain guarantees of at most $\frac{k+1}{2}-2\cdot 10{-4}$ for all $k\geq 4$.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)