The CORAL++ Algorithm for Unsupervised Domain Adaptation of Speaker Recogntion (2202.01092v1)
Abstract: State-of-the-art speaker recognition systems are trained with a large amount of human-labeled training data set. Such a training set is usually composed of various data sources to enhance the modeling capability of models. However, in practical deployment, unseen condition is almost inevitable. Domain mismatch is a common problem in real-life applications due to the statistical difference between the training and testing data sets. To alleviate the degradation caused by domain mismatch, we propose a new feature-based unsupervised domain adaptation algorithm. The algorithm we propose is a further optimization based on the well-known CORrelation ALignment (CORAL), so we call it CORAL++. On the NIST 2019 Speaker Recognition Evaluation (SRE19), we use SRE18 CTS set as the development set to verify the effectiveness of CORAL++. With the typical x-vector/PLDA setup, the CORAL++ outperforms the CORAL by 9.40% relatively on EER.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.