Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models, Benchmark and Efficient Evaluation (2202.01069v2)

Published 2 Feb 2022 in cs.RO and cs.CV

Abstract: Navigating complex indoor environments requires a deep understanding of the space the robotic agent is acting into to correctly inform the navigation process of the agent towards the goal location. In recent learning-based navigation approaches, the scene understanding and navigation abilities of the agent are achieved simultaneously by collecting the required experience in simulation. Unfortunately, even if simulators represent an efficient tool to train navigation policies, the resulting models often fail when transferred into the real world. One possible solution is to provide the navigation model with mid-level visual representations containing important domain-invariant properties of the scene. But, what are the best representations that facilitate the transfer of a model to the real-world? How can they be combined? In this work we address these issues by proposing a benchmark of Deep Learning architectures to combine a range of mid-level visual representations, to perform a PointGoal navigation task following a Reinforcement Learning setup. All the proposed navigation models have been trained with the Habitat simulator on a synthetic office environment and have been tested on the same real-world environment using a real robotic platform. To efficiently assess their performance in a real context, a validation tool has been proposed to generate realistic navigation episodes inside the simulator. Our experiments showed that navigation models can benefit from the multi-modal input and that our validation tool can provide good estimation of the expected navigation performance in the real world, while saving time and resources. The acquired synthetic and real 3D models of the environment, together with the code of our validation tool built on top of Habitat, are publicly available at the following link: https://iplab.dmi.unict.it/EmbodiedVN/

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube