Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Normalise for Fairness: A Simple Normalisation Technique for Fairness in Regression Machine Learning Problems (2202.00993v2)

Published 2 Feb 2022 in cs.LG and cs.CY

Abstract: Algorithms and Machine Learning (ML) are increasingly affecting everyday life and several decision-making processes, where ML has an advantage due to scalability or superior performance. Fairness in such applications is crucial, where models should not discriminate their results based on race, gender, or other protected groups. This is especially crucial for models affecting very sensitive topics, like interview invitation or recidivism prediction. Fairness is not commonly studied for regression problems compared to binary classification problems; hence, we present a simple, yet effective method based on normalisation (FaiReg), which minimises the impact of unfairness in regression problems, especially due to labelling bias. We present a theoretical analysis of the method, in addition to an empirical comparison against two standard methods for fairness, namely data balancing and adversarial training. We also include a hybrid formulation (FaiRegH), merging the presented method with data balancing, in an attempt to face labelling and sampling biases simultaneously. The experiments are conducted on the multimodal dataset First Impressions (FI) with various labels, namely Big-Five personality prediction and interview screening score. The results show the superior performance of diminishing the effects of unfairness better than data balancing, also without deteriorating the performance of the original problem as much as adversarial training. Fairness is evaluated based on the Equal Accuracy (EA) and Statistical Parity (SP) constraints. The experiments present a setup that enhances the fairness for several protected variables simultaneously.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: