Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters (2202.00954v1)

Published 2 Feb 2022 in math.NA, cs.LG, and cs.NA

Abstract: Computationally solving multi-marginal optimal transport (MOT) with squared Euclidean costs for $N$ discrete probability measures has recently attracted considerable attention, in part because of the correspondence of its solutions with Wasserstein-$2$ barycenters, which have many applications in data science. In general, this problem is NP-hard, calling for practical approximative algorithms. While entropic regularization has been successfully applied to approximate Wasserstein barycenters, this loses the sparsity of the optimal solution, making it difficult to solve the MOT problem directly in practice because of the curse of dimensionality. Thus, for obtaining barycenters, one usually resorts to fixed-support restrictions to a grid, which is, however, prohibitive in higher ambient dimensions $d$. In this paper, after analyzing the relationship between MOT and barycenters, we present two algorithms to approximate the solution of MOT directly, requiring mainly just $N-1$ standard two-marginal OT computations. Thus, they are fast, memory-efficient and easy to implement and can be used with any sparse OT solver as a black box. Moreover, they produce sparse solutions and show promising numerical results. We analyze these algorithms theoretically, proving upper and lower bounds for the relative approximation error.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube