Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PiP-X: Online feedback motion planning/replanning in dynamic environments using invariant funnels (2202.00772v3)

Published 1 Feb 2022 in cs.RO

Abstract: Computing kinodynamically feasible motion plans and repairing them on-the-fly as the environment changes is a challenging, yet relevant problem in robot-navigation. We propose a novel online single-query sampling-based motion re-planning algorithm - PiP-X, using finite-time invariant sets - funnels. We combine concepts from sampling-based methods, nonlinear systems analysis and control theory to create a single framework that enables feedback motion re-planning for any general nonlinear dynamical system in dynamic workspaces. A volumetric funnel-graph is constructed using sampling-based methods, and an optimal funnel-path from robot configuration to a desired goal region is then determined by computing the shortest-path subtree in it. Analysing and formally quantifying the stability of trajectories using Lyapunov level-set theory ensures kinodynamic feasibility and guaranteed set-invariance of the solution-paths. The use of incremental search techniques and a pre-computed library of motion-primitives ensure that our method can be used for quick online rewiring of controllable motion plans in densely cluttered and dynamic environments. We represent traversability and sequencibility of trajectories together in the form of an augmented directed-graph, helping us leverage discrete graph-based replanning algorithms to efficiently recompute feasible and controllable motion plans that are volumetric in nature. We validate our approach on a simulated 6DOF quadrotor platform in a variety of scenarios within a maze and random forest environment. From repeated experiments, we analyse the performance in terms of algorithm-success and length of traversed-trajectory.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic roadmaps for path planning in high-dimensional configuration spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.
  2. J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach to single-query path planning,” in Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), vol. 2.   IEEE, 2000, pp. 995–1001.
  3. S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” The international journal of robotics research, vol. 30, no. 7, pp. 846–894, 2011.
  4. O. Arslan and P. Tsiotras, “Use of relaxation methods in sampling-based algorithms for optimal motion planning,” in 2013 IEEE International Conference on Robotics and Automation.   IEEE, 2013, pp. 2421–2428.
  5. D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized kinodynamic motion planning with moving obstacles,” The International Journal of Robotics Research, vol. 21, no. 3, pp. 233–255, 2002.
  6. S. Karaman and E. Frazzoli, “Optimal kinodynamic motion planning using incremental sampling-based methods,” in 49th IEEE conference on decision and control (CDC).   IEEE, 2010, pp. 7681–7687.
  7. S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,” The international journal of robotics research, vol. 20, no. 5, pp. 378–400, 2001.
  8. M. Kleinbort, K. Solovey, Z. Littlefield, K. E. Bekris, and D. Halperin, “Probabilistic completeness of rrt for geometric and kinodynamic planning with forward propagation,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. x–xvi, 2018.
  9. J. hwan Jeon, S. Karaman, and E. Frazzoli, “Anytime computation of time-optimal off-road vehicle maneuvers using the RRT,” in 2011 50th IEEE Conference on Decision and Control and European Control Conference.   IEEE, 2011, pp. 3276–3282.
  10. D. J. Webb and J. Van Den Berg, “Kinodynamic RRT*: Asymptotically optimal motion planning for robots with linear dynamics,” in 2013 IEEE International Conference on Robotics and Automation.   IEEE, 2013, pp. 5054–5061.
  11. A. Ravankar, A. A. Ravankar, Y. Kobayashi, Y. Hoshino, and C.-C. Peng, “Path smoothing techniques in robot navigation: State-of-the-art, current and future challenges,” Sensors, vol. 18, no. 9, p. 3170, 2018.
  12. M. Basescu and J. Moore, “Direct NMPC for post-stall motion planning with fixed-wing UAVs,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 9592–9598.
  13. A. Stentz et al., “The focussed d*{}^{*}start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT algorithm for real-time replanning,” in IJCAI, vol. 95, 1995, pp. 1652–1659.
  14. S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning A*{}^{*}start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT,” Artificial Intelligence, vol. 155, no. 1-2, pp. 93–146, 2004.
  15. S. Koenig and M. Likhachev, “D*{}^{*}start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPTlite,” Aaai/iaai, vol. 15, 2002.
  16. J. Bruce and M. M. Veloso, “Real-time randomized path planning for robot navigation,” in Robot soccer world cup.   Springer, 2002, pp. 288–295.
  17. D. Ferguson, N. Kalra, and A. Stentz, “Replanning with RRTs,” in Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006.   IEEE, 2006, pp. 1243–1248.
  18. M. Zucker, J. Kuffner, and M. Branicky, “Multipartite rrts for rapid replanning in dynamic environments,” in Proceedings 2007 IEEE International Conference on Robotics and Automation.   IEEE, 2007, pp. 1603–1609.
  19. M. Otte and E. Frazzoli, “RRTX: Asymptotically optimal single-query sampling-based motion planning with quick replanning,” The International Journal of Robotics Research, vol. 35, no. 7, pp. 797–822, 2016.
  20. J. D. Gammell, T. D. Barfoot, and S. S. Srinivasa, “Batch informed trees (BIT*): Informed asymptotically optimal anytime search,” The International Journal of Robotics Research, vol. 39, no. 5, pp. 543–567, 2020.
  21. D. Connell and H. M. La, “Dynamic path planning and replanning for mobile robots using RRT,” in 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC).   IEEE, 2017, pp. 1429–1434.
  22. O. Adiyatov and H. A. Varol, “A novel RRT*-based algorithm for motion planning in dynamic environments,” in 2017 IEEE International Conference on Mechatronics and Automation (ICMA).   IEEE, 2017, pp. 1416–1421.
  23. Y. Li, Z. Littlefield, and K. E. Bekris, “Asymptotically optimal sampling-based kinodynamic planning,” The International Journal of Robotics Research, vol. 35, no. 5, pp. 528–564, 2016.
  24. M. Mason, “The mechanics of manipulation,” in Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2.   IEEE, 1985, pp. 544–548.
  25. R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, “Sequential composition of dynamically dexterous robot behaviors,” The International Journal of Robotics Research, vol. 18, no. 6, pp. 534–555, 1999.
  26. R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “LQR-trees: Feedback motion planning via sums-of-squares verification,” The International Journal of Robotics Research, vol. 29, no. 8, pp. 1038–1052, 2010.
  27. M. M. Tobenkin, I. R. Manchester, and R. Tedrake, “Invariant funnels around trajectories using sum-of-squares programming,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 9218–9223, 2011.
  28. A. Majumdar and R. Tedrake, “Funnel libraries for real-time robust feedback motion planning,” The International Journal of Robotics Research, vol. 36, no. 8, pp. 947–982, 2017.
  29. J. Moore, R. Cory, and R. Tedrake, “Robust post-stall perching with a simple fixed-wing glider using LQR-trees,” Bioinspiration & biomimetics, vol. 9, no. 2, p. 025013, 2014.
  30. A. Majumdar, A. A. Ahmadi, and R. Tedrake, “Control design along trajectories with sums of squares programming,” in 2013 IEEE International Conference on Robotics and Automation.   IEEE, 2013, pp. 4054–4061.
  31. P. Reist, P. Preiswerk, and R. Tedrake, “Feedback-motion-planning with simulation-based lqr-trees,” The International Journal of Robotics Research, vol. 35, no. 11, pp. 1393–1416, 2016.
  32. C. K. Verginis, D. V. Dimarogonas, and L. E. Kavraki, “KDF: Kinodynamic motion planning via geometric sampling-based algorithms and funnel control,” arXiv preprint arXiv:2104.11917, 2021.
  33. A. Bajcsy, S. Bansal, E. Bronstein, V. Tolani, and C. J. Tomlin, “An efficient reachability-based framework for provably safe autonomous navigation in unknown environments,” in 2019 IEEE 58th Conference on Decision and Control (CDC).   IEEE, 2019, pp. 1758–1765.
  34. S. Kousik, S. Vaskov, F. Bu, M. Johnson-Roberson, and R. Vasudevan, “Bridging the gap between safety and real-time performance in receding-horizon trajectory design for mobile robots,” The International Journal of Robotics Research, vol. 39, no. 12, pp. 1419–1469, 2020.
  35. S. L. Herbert, M. Chen, S. Han, S. Bansal, J. F. Fisac, and C. J. Tomlin, “FaSTrack: A modular framework for fast and guaranteed safe motion planning,” in 2017 IEEE 56th Annual Conference on Decision and Control (CDC).   IEEE, 2017, pp. 1517–1522.
  36. S. Singh, B. Landry, A. Majumdar, J.-J. Slotine, and M. Pavone, “Robust feedback motion planning via contraction theory,” The International Journal of Robotics Research, 2019.
  37. Z. Manchester and S. Kuindersma, “Robust direct trajectory optimization using approximate invariant funnels,” Autonomous Robots, vol. 43, no. 2, pp. 375–387, 2019.
  38. H. Ravanbakhsh, F. Laine, and S. A. Seshia, “Real-time funnel generation for restricted motion planning,” arXiv preprint arXiv:1911.01532, 2019.
  39. D. Dey, T. Liu, B. Sofman, and J. Bagnell, “Efficient optimization of control libraries,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 26, no. 1, 2012.
  40. E. Frazzoli, M. A. Dahleh, and E. Feron, “Maneuver-based motion planning for nonlinear systems with symmetries,” IEEE transactions on robotics, vol. 21, no. 6, pp. 1077–1091, 2005.
  41. A. Majumdar and R. Tedrake, “Robust online motion planning with regions of finite time invariance,” in Algorithmic foundations of robotics X.   Springer, 2013, pp. 543–558.
  42. RoboDK, “Simulation and OLP for robots.” [Online]. Available: https://robodk.com/
  43. I. Gipson, K. Gupta, and M. Greenspan, “Mpk: An open extensible motion planning kernel,” Journal of Robotic Systems, vol. 18, no. 8, pp. 433–443, 2001.
Citations (7)

Summary

We haven't generated a summary for this paper yet.