Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Testability and local certification of monotone properties in minor-closed classes (2202.00543v3)

Published 1 Feb 2022 in cs.DS and math.CO

Abstract: The main problem in the area of graph property testing is to understand which graph properties are \emph{testable}, which means that with constantly many queries to any input graph $G$, a tester can decide with good probability whether $G$ satisfies the property, or is far from satisfying the property. Testable properties are well understood in the dense model and in the bounded degree model, but little is known in sparse graph classes when graphs are allowed to have unbounded degree. This is the setting of the \emph{sparse model}. We prove that for any proper minor-closed class $\mathcal{G}$, any monotone property (i.e., any property that is closed under taking subgraphs) is testable for graphs from $\mathcal{G}$ in the sparse model. This extends a result of Czumaj and Sohler (FOCS'19), who proved it for monotone properties with finitely many forbidden subgraphs. Our result implies for instance that for any integers $k$ and $t$, $k$-colorability of $K_t$-minor free graphs is testable in the sparse model. Elek recently proved that monotone properties of bounded degree graphs from minor-closed classes that are closed under disjoint union can be verified by an approximate proof labeling scheme in constant time. We show again that the assumption of bounded degree can be omitted in his result.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.