Papers
Topics
Authors
Recent
2000 character limit reached

Maximum Batch Frobenius Norm for Multi-Domain Text Classification (2202.00537v1)

Published 29 Jan 2022 in cs.CL and cs.LG

Abstract: Multi-domain text classification (MDTC) has obtained remarkable achievements due to the advent of deep learning. Recently, many endeavors are devoted to applying adversarial learning to extract domain-invariant features to yield state-of-the-art results. However, these methods still face one challenge: transforming original features to be domain-invariant distorts the distributions of the original features, degrading the discriminability of the learned features. To address this issue, we first investigate the structure of the batch classification output matrix and theoretically justify that the discriminability of the learned features has a positive correlation with the Frobenius norm of the batch output matrix. Based on this finding, we propose a maximum batch Frobenius norm (MBF) method to boost the feature discriminability for MDTC. Experiments on two MDTC benchmarks show that our MBF approach can effectively advance the performance of the state-of-the-art.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube