Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Identifying Influential Nodes Using Overlapping Modularity Vitality (2202.00516v1)

Published 30 Jan 2022 in cs.SI

Abstract: It is of paramount importance to uncover influential nodes to control diffusion phenomena in a network. In recent works, there is a growing trend to investigate the role of the community structure to solve this issue. Up to now, the vast majority of the so-called community-aware centrality measures rely on non-overlapping community structure. However, in many real-world networks, such as social networks, the communities overlap. In other words, a node can belong to multiple communities. To overcome this drawback, we propose and investigate the "Overlapping Modularity Vitality" centrality measure. This extension of "Modularity Vitality" quantifies the community structure strength variation when removing a node. It allows identifying a node as a hub or a bridge based on its contribution to the overlapping modularity of a network. A comparative analysis with its non-overlapping version using the Susceptible-Infected-Recovered (SIR) epidemic diffusion model has been performed on a set of six real-world networks. Overall, Overlapping Modularity Vitality outperforms its alternative. These results illustrate the importance of incorporating knowledge about the overlapping community structure to identify influential nodes effectively. Moreover, one can use multiple ranking strategies as the two measures are signed. Results show that selecting the nodes with the top positive or the top absolute centrality values is more effective than choosing the ones with the maximum negative values to spread the epidemic.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.