Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

NeuraHealth: An Automated Screening Pipeline to Detect Undiagnosed Cognitive Impairment in Electronic Health Records with Deep Learning and Natural Language Processing (2202.00478v3)

Published 12 Jan 2022 in cs.CL

Abstract: Dementia related cognitive impairment (CI) is a neurodegenerative disorder, affecting over 55 million people worldwide and growing rapidly at the rate of one new case every 3 seconds. 75% cases go undiagnosed globally with up to 90% in low-and-middle-income countries, leading to an estimated annual worldwide cost of USD 1.3 trillion, forecasted to reach 2.8 trillion by 2030. With no cure, a recurring failure of clinical trials, and a lack of early diagnosis, the mortality rate is 100%. Information in electronic health records (EHR) can provide vital clues for early detection of CI, but a manual review by experts is tedious and error prone. Several computational methods have been proposed, however, they lack an enhanced understanding of the linguistic context in complex language structures of EHR. Therefore, I propose a novel and more accurate framework, NeuraHealth, to identify patients who had no earlier diagnosis. In NeuraHealth, using patient EHR from Mass General Brigham BioBank, I fine-tuned a bi-directional attention-based deep learning natural language processing model to classify sequences. The sequence predictions were used to generate structured features as input for a patient level regularized logistic regression model. This two-step framework creates high dimensionality, outperforming all existing state-of-the-art computational methods as well as clinical methods. Further, I integrate the models into a real-world product, a web app, to create an automated EHR screening pipeline for scalable and high-speed discovery of undetected CI in EHR, making early diagnosis viable in medical facilities and in regions with scarce health services.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube