Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Combinatorial properties of lazy expansions in Cantor real bases (2202.00437v1)

Published 1 Feb 2022 in math.CO and cs.DM

Abstract: The lazy algorithm for a real base $\beta$ is generalized to the setting of Cantor bases $\boldsymbol{\beta}=(\beta_n){n\in \mathbb{N}}$ introduced recently by Charlier and the author. To do so, let $x{\boldsymbol{\beta}}$ be the greatest real number that has a $\boldsymbol{\beta}$-representation $a_0a_1a_2\cdots$ such that each letter $a_n$ belongs to ${0,\ldots,\lceil \beta_n \rceil -1}$. This paper is concerned with the combinatorial properties of the lazy $\boldsymbol{\beta}$-expansions, which are defined when $x_{\boldsymbol{\beta}}<+\infty$. As an illustration, Cantor bases following the Thue-Morse sequence are studied and a formula giving their corresponding value of $x_{\boldsymbol{\beta}}$ is proved. First, it is shown that the lazy $\boldsymbol{\beta}$-expansions are obtained by "flipping" the digits of the greedy $\boldsymbol{\beta}$-expansions. Next, a Parry-like criterion characterizing the sequences of non-negative integers that are the lazy $\boldsymbol{\beta}$-expansions of some real number in $(x_{\boldsymbol{\beta}}-1,x_{\boldsymbol{\beta}}]$ is proved. Moreover, the lazy $\boldsymbol{\beta}$-shift is studied and in the particular case of alternate bases, that is the periodic Cantor bases, an analogue of Bertrand-Mathis' theorem in the lazy framework is proved: the lazy $\boldsymbol{\beta}$-shift is sofic if and only if all quasi-lazy $\boldsymbol{\beta}{(i)}$-expansions of $x_{\boldsymbol{\beta}{(i)}}-1$ are ultimately periodic, where $\boldsymbol{\beta}{(i)}$ is the $i$-th shift of the alternate base $\boldsymbol{\beta}$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)