Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Memory-based Message Passing: Decoupling the Message for Propogation from Discrimination (2202.00423v1)

Published 1 Feb 2022 in cs.LG and cs.AI

Abstract: Message passing is a fundamental procedure for graph neural networks in the field of graph representation learning. Based on the homophily assumption, the current message passing always aggregates features of connected nodes, such as the graph Laplacian smoothing process. However, real-world graphs tend to be noisy and/or non-smooth. The homophily assumption does not always hold, leading to sub-optimal results. A revised message passing method needs to maintain each node's discriminative ability when aggregating the message from neighbors. To this end, we propose a Memory-based Message Passing (MMP) method to decouple the message of each node into a self-embedding part for discrimination and a memory part for propagation. Furthermore, we develop a control mechanism and a decoupling regularization to control the ratio of absorbing and excluding the message in the memory for each node. More importantly, our MMP is a general skill that can work as an additional layer to help improve traditional GNNs performance. Extensive experiments on various datasets with different homophily ratios demonstrate the effectiveness and robustness of the proposed method.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (3)