Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dimensionality Reduction Meets Message Passing for Graph Node Embeddings (2202.00408v2)

Published 1 Feb 2022 in cs.LG and stat.ML

Abstract: Graph Neural Networks (GNNs) have become a popular approach for various applications, ranging from social network analysis to modeling chemical properties of molecules. While GNNs often show remarkable performance on public datasets, they can struggle to learn long-range dependencies in the data due to over-smoothing and over-squashing tendencies. To alleviate this challenge, we propose PCAPass, a method which combines Principal Component Analysis (PCA) and message passing for generating node embeddings in an unsupervised manner and leverages gradient boosted decision trees for classification tasks. We show empirically that this approach provides competitive performance compared to popular GNNs on node classification benchmarks, while gathering information from longer distance neighborhoods. Our research demonstrates that applying dimensionality reduction with message passing and skip connections is a promising mechanism for aggregating long-range dependencies in graph structured data.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube