Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Learning Infinite-Horizon Average-Reward Markov Decision Processes with Constraints (2202.00150v1)

Published 31 Jan 2022 in cs.LG

Abstract: We study regret minimization for infinite-horizon average-reward Markov Decision Processes (MDPs) under cost constraints. We start by designing a policy optimization algorithm with carefully designed action-value estimator and bonus term, and show that for ergodic MDPs, our algorithm ensures $\widetilde{O}(\sqrt{T})$ regret and constant constraint violation, where $T$ is the total number of time steps. This strictly improves over the algorithm of (Singh et al., 2020), whose regret and constraint violation are both $\widetilde{O}(T{2/3})$. Next, we consider the most general class of weakly communicating MDPs. Through a finite-horizon approximation, we develop another algorithm with $\widetilde{O}(T{2/3})$ regret and constraint violation, which can be further improved to $\widetilde{O}(\sqrt{T})$ via a simple modification, albeit making the algorithm computationally inefficient. As far as we know, these are the first set of provable algorithms for weakly communicating MDPs with cost constraints.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube