Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Practical Efficient Microservice Autoscaling with QoS Assurance (2202.00057v2)

Published 31 Jan 2022 in cs.DC, cs.SY, and eess.SY

Abstract: Cloud applications are increasingly moving away from monolithic services to agile microservices-based deployments. However, efficient resource management for microservices poses a significant hurdle due to the sheer number of loosely coupled and interacting components. The interdependencies between various microservices make existing cloud resource autoscaling techniques ineffective. Meanwhile, ML based approaches that try to capture the complex relationships in microservices require extensive training data and cause intentional SLO violations. Moreover, these ML-heavy approaches are slow in adapting to dynamically changing microservice operating environments. In this paper, we propose PEMA (Practical Efficient Microservice Autoscaling), a lightweight microservice resource manager that finds efficient resource allocation through opportunistic resource reduction. PEMA's lightweight design enables novel workload-aware and adaptive resource management. Using three prototype microservice implementations, we show that PEMA can find efficient resource allocation and save up to 33% resource compared to the commercial rule-based resource allocations.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube