Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Orientation-Aware Graph Neural Networks for Protein Structure Representation Learning (2201.13299v6)

Published 28 Jan 2022 in q-bio.BM, cs.AI, and cs.LG

Abstract: By folding into particular 3D structures, proteins play a key role in living beings. To learn meaningful representation from a protein structure for downstream tasks, not only the global backbone topology but the local fine-grained orientational relations between amino acids should also be considered. In this work, we propose the Orientation-Aware Graph Neural Networks (OAGNNs) to better sense the geometric characteristics in protein structure (e.g. inner-residue torsion angles, inter-residue orientations). Extending a single weight from a scalar to a 3D vector, we construct a rich set of geometric-meaningful operations to process both the classical and SO(3) representations of a given structure. To plug our designed perceptron unit into existing Graph Neural Networks, we further introduce an equivariant message passing paradigm, showing superior versatility in maintaining SO(3)-equivariance at the global scale. Experiments have shown that our OAGNNs have a remarkable ability to sense geometric orientational features compared to classical networks. OAGNNs have also achieved state-of-the-art performance on various computational biology applications related to protein 3D structures. The code is available at https://github.com/Ced3-han/OAGNN/tree/main.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.