Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

On the Robustness of Quality Measures for GANs (2201.13019v2)

Published 31 Jan 2022 in cs.LG

Abstract: This work evaluates the robustness of quality measures of generative models such as Inception Score (IS) and Fr\'echet Inception Distance (FID). Analogous to the vulnerability of deep models against a variety of adversarial attacks, we show that such metrics can also be manipulated by additive pixel perturbations. Our experiments indicate that one can generate a distribution of images with very high scores but low perceptual quality. Conversely, one can optimize for small imperceptible perturbations that, when added to real world images, deteriorate their scores. We further extend our evaluation to generative models themselves, including the state of the art network StyleGANv2. We show the vulnerability of both the generative model and the FID against additive perturbations in the latent space. Finally, we show that the FID can be robustified by simply replacing the standard Inception with a robust Inception. We validate the effectiveness of the robustified metric through extensive experiments, showing it is more robust against manipulation.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.