Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Simple Calibration via Geodesic Kernels (2201.13001v10)

Published 31 Jan 2022 in cs.LG, cs.AI, cs.DS, q-bio.NC, and stat.ML

Abstract: Deep discriminative approaches, such as decision forests and deep neural networks, have recently found applications in many important real-world scenarios. However, deploying these learning algorithms in safety-critical applications raises concerns, particularly when it comes to ensuring calibration for both in-distribution and out-of-distribution regions. Many popular methods for in-distribution (ID) calibration, such as isotonic and Platt's sigmoidal regression, exhibit adequate ID calibration performance. However, these methods are not calibrated for the entire feature space, leading to overconfidence in the out-of-distribution (OOD) region. Existing OOD calibration methods generally exhibit poor ID calibration. In this paper, we jointly address the ID and OOD problems. We leveraged the fact that deep models learn to partition feature space into a union of polytopes, that is, flat-sided geometric objects. We introduce a geodesic distance to measure the distance between these polytopes and further distinguish samples within the same polytope using a Gaussian kernel. Our experiments on both tabular and vision benchmarks show that the proposed approaches, namely Kernel Density Forest (KDF) and Kernel Density Network (KDN), obtain well-calibrated posteriors for both ID and OOD samples, while mostly preserving the classification accuracy and extrapolating beyond the training data to handle OOD inputs appropriately.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com