Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Riemannian block SPD coupling manifold and its application to optimal transport (2201.12933v2)

Published 30 Jan 2022 in math.FA, math.OC, and stat.ML

Abstract: In this work, we study the optimal transport (OT) problem between symmetric positive definite (SPD) matrix-valued measures. We formulate the above as a generalized optimal transport problem where the cost, the marginals, and the coupling are represented as block matrices and each component block is a SPD matrix. The summation of row blocks and column blocks in the coupling matrix are constrained by the given block-SPD marginals. We endow the set of such block-coupling matrices with a novel Riemannian manifold structure. This allows to exploit the versatile Riemannian optimization framework to solve generic SPD matrix-valued OT problems. We illustrate the usefulness of the proposed approach in several applications.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube