Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Sparse Centroid-Encoder: A Nonlinear Model for Feature Selection (2201.12910v2)

Published 30 Jan 2022 in cs.LG and cs.CV

Abstract: Autoencoders have been widely used as a nonlinear tool for data dimensionality reduction. While autoencoders don't utilize the label information, Centroid-Encoders (CE)\cite{ghosh2022supervised} use the class label in their learning process. In this study, we propose a sparse optimization using the Centroid-Encoder architecture to determine a minimal set of features that discriminate between two or more classes. The resulting algorithm, Sparse Centroid-Encoder (SCE), extracts discriminatory features in groups using a sparsity inducing $\ell_1$-norm while mapping a point to its class centroid. One key attribute of SCE is that it can extract informative features from a multi-modal data set, i.e., data sets whose classes appear to have multiple clusters. The algorithm is applied to a wide variety of real world data sets, including single-cell data, high dimensional biological data, image data, speech data, and accelerometer sensor data. We compared our method to various state-of-the-art feature selection techniques, including supervised Concrete Autoencoders (SCAE), Feature Selection Network (FsNet), deep feature selection (DFS), Stochastic Gate (STG), and LassoNet. We empirically showed that SCE features often produced better classification accuracy than other methods on sequester test set.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.