Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Two-Step Approach to Optimal Dynamic Pricing in Multi-Demand Combinatorial Markets (2201.12869v1)

Published 30 Jan 2022 in cs.GT

Abstract: Online markets are a part of everyday life, and their rules are governed by algorithms. Assuming participants are inherently self-interested, well designed rules can help to increase social welfare. Many algorithms for online markets are based on prices: the seller is responsible for posting prices while buyers make purchases which are most profitable given the posted prices. To make adjustments to the market the seller is allowed to update prices at certain timepoints. Posted prices are an intuitive way to design a market. Despite the fact that each buyer acts selfishly, the seller's goal is often assumed to be that of social welfare maximization. Berger, Eden and Feldman recently considered the case of a market with only three buyers where each buyer has a fixed number of goods to buy and the profit of a bought bundle of items is the sum of profits of the items in the bundle. For such markets, Berger et. al. showed that the seller can maximize social welfare by dynamically updating posted prices before arrival of each buyer. B\'{e}rczi, B\'{e}rczi-Kov\'{a}cs and Sz\"{o}gi showed that the social welfare can be maximized also when each buyer is ready to buy at most two items. We study the power of posted prices with dynamical updates in more general cases. First, we show that the result of Berger et. al. can be generalized from three to four buyers. Then we show that the result of B\'{e}rczi, B\'{e}rczi-Kov\'{a}cs and Sz\"{o}gi can be generalized to the case when each buyer is ready to buy up to three items. We also show that a dynamic pricing is possible whenever there are at most two allocations maximizing social welfare.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.