Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low Rank Approximation of Dual Complex Matrices (2201.12781v1)

Published 30 Jan 2022 in math.NA, cs.NA, and math.RA

Abstract: Dual complex numbers can represent rigid body motion in 2D spaces. Dual complex matrices are linked with screw theory, and have potential applications in various areas. In this paper, we study low rank approximation of dual complex matrices. We define $2$-norm for dual complex vectors, and Frobenius norm for dual complex matrices. These norms are nonnegative dual numbers. We establish the unitary invariance property of dual complex matrices. We study eigenvalues of square dual complex matrices, and show that an $n \times n$ dual complex Hermitian matrix has exactly $n$ eigenvalues, which are dual numbers. We present a singular value decomposition (SVD) theorem for dual complex matrices, define ranks and appreciable ranks for dual complex matrices, and study their properties. We establish an Eckart-Young like theorem for dual complex matrices, and present an algorithm framework for low rank approximation of dual complex matrices via truncated SVD. The SVD of dual complex matrices also provides a basic tool for Principal Component Analysis (PCA) via these matrices. Numerical experiments are reported.

Citations (11)

Summary

We haven't generated a summary for this paper yet.