Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Frustratingly Simple Approach for End-to-End Image Captioning (2201.12723v3)

Published 30 Jan 2022 in cs.CV and cs.CL

Abstract: Image Captioning is a fundamental task to join vision and language, concerning about cross-modal understanding and text generation. Recent years witness the emerging attention on image captioning. Most of existing works follow a traditional two-stage training paradigm. Before training the captioning models, an extra object detector is utilized to recognize the objects in the image at first. However, they require sizeable datasets with fine-grained object annotation for training the object detector, which is a daunting task. In addition, the errors of the object detectors are easy to propagate to the following captioning models, degenerating models' performance. To alleviate such defects, we propose a frustratingly simple but highly effective end-to-end image captioning framework, Visual Conditioned GPT (VC-GPT), by connecting the pre-trained visual encoder (CLIP-ViT) and language decoder (GPT2). Different from the vanilla connection method that directly inserts the cross-attention modules into GPT2, we come up with a self-ensemble cross-modal fusion mechanism that comprehensively considers both the single- and cross-modal knowledge. As a result, we do not need extra object detectors for model training. Experimental results conducted on three popular image captioning benchmarks (MSCOCO, Flickr30k and NoCaps) demonstrate that our VC-GPT achieves either the best or the second-best performance across all evaluation metrics over extensive baseline systems.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.