Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Rewiring with Positional Encodings for Graph Neural Networks (2201.12674v4)

Published 29 Jan 2022 in cs.LG

Abstract: Several recent works use positional encodings to extend the receptive fields of graph neural network (GNN) layers equipped with attention mechanisms. These techniques, however, extend receptive fields to the complete graph, at substantial computational cost and risking a change in the inductive biases of conventional GNNs, or require complex architecture adjustments. As a conservative alternative, we use positional encodings to expand receptive fields to $r$-hop neighborhoods. More specifically, our method augments the input graph with additional nodes/edges and uses positional encodings as node and/or edge features. We thus modify graphs before inputting them to a downstream GNN model, instead of modifying the model itself. This makes our method model-agnostic, i.e., compatible with any of the existing GNN architectures. We also provide examples of positional encodings that are lossless with a one-to-one map between the original and the modified graphs. We demonstrate that extending receptive fields via positional encodings and a virtual fully-connected node significantly improves GNN performance and alleviates over-squashing using small $r$. We obtain improvements on a variety of models and datasets and reach competitive performance using traditional GNNs or graph Transformers.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.