Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Towards Robust Deep Active Learning for Scientific Computing (2201.12632v2)

Published 29 Jan 2022 in cs.LG and cs.AI

Abstract: Deep learning (DL) is revolutionizing the scientific computing community. To reduce the data gap, active learning has been identified as a promising solution for DL in the scientific computing community. However, the deep active learning (DAL) literature is dominated by image classification problems and pool-based methods. Here we investigate the robustness of pool-based DAL methods for scientific computing problems (dominated by regression) where DNNs are increasingly used. We show that modern pool-based DAL methods all share an untunable hyperparameter, termed the pool ratio, denoted $\gamma$, which is often assumed to be known apriori in the literature. We evaluate the performance of five state-of-the-art DAL methods on six benchmark problems if we assume $\gamma$ is \textit{not} known - a more realistic assumption for scientific computing problems. Our results indicate that this reduces the performance of modern DAL methods and that they sometimes can even perform worse than random sampling, creating significant uncertainty when used in real-world settings. To overcome this limitation we propose, to our knowledge, the first query synthesis DAL method for regression, termed NA-QBC. NA-QBC removes the sensitive $\gamma$ hyperparameter and we find that, on average, it outperforms the other DAL methods on our benchmark problems. Crucially, NA-QBC always outperforms random sampling, providing more robust performance benefits.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube