Papers
Topics
Authors
Recent
2000 character limit reached

On the algorithm of best approximation by low rank matrices in the Chebyshev norm (2201.12301v1)

Published 28 Jan 2022 in math.NA and cs.NA

Abstract: The low-rank matrix approximation problem is ubiquitous in computational mathematics. Traditionally, this problem is solved in spectral or Frobenius norms, where the accuracy of the approximation is related to the rate of decrease of the singular values of the matrix. However, recent results indicate that this requirement is not necessary for other norms. In this paper, we propose a method for solving the low-rank approximation problem in the Chebyshev norm, which is capable of efficiently constructing accurate approximations for matrices, whose singular values do not decrease or decrease slowly.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.