Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Stock Trading System for a Medium Volatile Asset using Multi Layer Perceptron (2201.12286v1)

Published 17 Jan 2022 in q-fin.ST and cs.LG

Abstract: Stock market forecasting is a lucrative field of interest with promising profits but not without its difficulties and for some people could be even causes of failure. Financial markets by their nature are complex, non-linear and chaotic, which implies that accurately predicting the prices of assets that are part of it becomes very complicated. In this paper we propose a stock trading system having as main core the feed-forward deep neural networks (DNN) to predict the price for the next 30 days of open market, of the shares issued by Abercrombie & Fitch Co. (ANF) in the stock market of the New York Stock Exchange (NYSE). The system we have elaborated calculates the most effective technical indicator, applying it to the predictions computed by the DNNs, for generating trades. The results showed an increase in values such as Expectancy Ratio of 2.112% of profitable trades with Sharpe, Sortino, and Calmar Ratios of 2.194, 3.340, and 12.403 respectively. As a verification, we adopted a backtracking simulation module in our system, which maps trades to actual test data consisting of the last 30 days of open market on the ANF asset. Overall, the results were promising bringing a total profit factor of 3.2% in just one month from a very modest budget of $100. This was possible because the system reduced the number of trades by choosing the most effective and efficient trades, saving on commissions and slippage costs.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.