Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 128 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Compositionality-Aware Graph2Seq Learning (2201.12178v1)

Published 28 Jan 2022 in cs.LG

Abstract: Graphs are a highly expressive data structure, but it is often difficult for humans to find patterns from a complex graph. Hence, generating human-interpretable sequences from graphs have gained interest, called graph2seq learning. It is expected that the compositionality in a graph can be associated to the compositionality in the output sequence in many graph2seq tasks. Therefore, applying compositionality-aware GNN architecture would improve the model performance. In this study, we adopt the multi-level attention pooling (MLAP) architecture, that can aggregate graph representations from multiple levels of information localities. As a real-world example, we take up the extreme source code summarization task, where a model estimate the name of a program function from its source code. We demonstrate that the model having the MLAP architecture outperform the previous state-of-the-art model with more than seven times fewer parameters than it.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.