Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

O-ViT: Orthogonal Vision Transformer (2201.12133v2)

Published 28 Jan 2022 in cs.CV and cs.LG

Abstract: Inspired by the tremendous success of the self-attention mechanism in natural language processing, the Vision Transformer (ViT) creatively applies it to image patch sequences and achieves incredible performance. However, the scaled dot-product self-attention of ViT brings about scale ambiguity to the structure of the original feature space. To address this problem, we propose a novel method named Orthogonal Vision Transformer (O-ViT), to optimize ViT from the geometric perspective. O-ViT limits parameters of self-attention blocks to be on the norm-keeping orthogonal manifold, which can keep the geometry of the feature space. Moreover, O-ViT achieves both orthogonal constraints and cheap optimization overhead by adopting a surjective mapping between the orthogonal group and its Lie algebra.We have conducted comparative experiments on image recognition tasks to demonstrate O-ViT's validity and experiments show that O-ViT can boost the performance of ViT by up to 3.6%.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.