Emergent Mind

Differential Privacy Guarantees for Stochastic Gradient Langevin Dynamics

(2201.11980)
Published Jan 28, 2022 in stat.ML and cs.LG

Abstract

We analyse the privacy leakage of noisy stochastic gradient descent by modeling R\'enyi divergence dynamics with Langevin diffusions. Inspired by recent work on non-stochastic algorithms, we derive similar desirable properties in the stochastic setting. In particular, we prove that the privacy loss converges exponentially fast for smooth and strongly convex objectives under constant step size, which is a significant improvement over previous DP-SGD analyses. We also extend our analysis to arbitrary sequences of varying step sizes and derive new utility bounds. Last, we propose an implementation and our experiments show the practical utility of our approach compared to classical DP-SGD libraries.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.