Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 46 tok/s Pro
Gemini 2.5 Flash 148 tok/s Pro
Kimi K2 170 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Simplifying deflation for non-convex optimization with applications in Bayesian inference and topology optimization (2201.11926v1)

Published 28 Jan 2022 in math.OC, cs.LG, and stat.CO

Abstract: Non-convex optimization problems have multiple local optimal solutions. Non-convex optimization problems are commonly found in numerous applications. One of the methods recently proposed to efficiently explore multiple local optimal solutions without random re-initialization relies on the concept of deflation. In this paper, different ways to use deflation in non-convex optimization and nonlinear system solving are discussed. A simple, general and novel deflation constraint is proposed to enable the use of deflation together with existing nonlinear programming solvers or nonlinear system solvers. The connection between the proposed deflation constraint and a minimum distance constraint is presented. Additionally, a number of variations of deflation constraints and their limitations are discussed. Finally, a number of applications of the proposed methodology in the fields of approximate Bayesian inference and topology optimization are presented.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.