Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Boosting Entity Mention Detection for Targetted Twitter Streams with Global Contextual Embeddings (2201.11885v1)

Published 28 Jan 2022 in cs.CL

Abstract: Microblogging sites, like Twitter, have emerged as ubiquitous sources of information. Two important tasks related to the automatic extraction and analysis of information in Microblogs are Entity Mention Detection (EMD) and Entity Detection (ED). The state-of-the-art EMD systems aim to model the non-literary nature of microblog text by training upon offline static datasets. They extract a combination of surface-level features -- orthographic, lexical, and semantic -- from individual messages for noisy text modeling and entity extraction. But given the constantly evolving nature of microblog streams, detecting all entity mentions from such varying yet limited context of short messages remains a difficult problem. To this end, we propose a framework named EMD Globalizer, better suited for the execution of EMD learners on microblog streams. It deviates from the processing of isolated microblog messages by existing EMD systems, where learned knowledge from the immediate context of a message is used to suggest entities. After an initial extraction of entity candidates by an EMD system, the proposed framework leverages occurrence mining to find additional candidate mentions that are missed during this first detection. Aggregating the local contextual representations of these mentions, a global embedding is drawn from the collective context of an entity candidate within a stream. The global embeddings are then utilized to separate entities within the candidates from false positives. All mentions of said entities from the stream are produced in the framework's final outputs. Our experiments show that EMD Globalizer can enhance the effectiveness of all existing EMD systems that we tested (on average by 25.61%) with a small additional computational overhead.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube