Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 142 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

DecisionHoldem: Safe Depth-Limited Solving With Diverse Opponents for Imperfect-Information Games (2201.11580v2)

Published 27 Jan 2022 in cs.AI

Abstract: An imperfect-information game is a type of game with asymmetric information. It is more common in life than perfect-information game. AI in imperfect-information games, such like poker, has made considerable progress and success in recent years. The great success of superhuman poker AI, such as Libratus and Deepstack, attracts researchers to pay attention to poker research. However, the lack of open-source code limits the development of Texas hold'em AI to some extent. This article introduces DecisionHoldem, a high-level AI for heads-up no-limit Texas hold'em with safe depth-limited subgame solving by considering possible ranges of opponent's private hands to reduce the exploitability of the strategy. Experimental results show that DecisionHoldem defeats the strongest openly available agent in heads-up no-limit Texas hold'em poker, namely Slumbot, and a high-level reproduction of Deepstack, viz, Openstack, by more than 730 mbb/h (one-thousandth big blind per round) and 700 mbb/h. Moreover, we release the source codes and tools of DecisionHoldem to promote AI development in imperfect-information games.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.