Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Density-Aware Hyper-Graph Neural Networks for Graph-based Semi-supervised Node Classification (2201.11511v1)

Published 27 Jan 2022 in cs.LG and cs.CV

Abstract: Graph-based semi-supervised learning, which can exploit the connectivity relationship between labeled and unlabeled data, has been shown to outperform the state-of-the-art in many artificial intelligence applications. One of the most challenging problems for graph-based semi-supervised node classification is how to use the implicit information among various data to improve the performance of classifying. Traditional studies on graph-based semi-supervised learning have focused on the pairwise connections among data. However, the data correlation in real applications could be beyond pairwise and more complicated. The density information has been demonstrated to be an important clue, but it is rarely explored in depth among existing graph-based semi-supervised node classification methods. To develop a flexible and effective model for graph-based semi-supervised node classification, we propose a novel Density-Aware Hyper-Graph Neural Networks (DA-HGNN). In our proposed approach, hyper-graph is provided to explore the high-order semantic correlation among data, and a density-aware hyper-graph attention network is presented to explore the high-order connection relationship. Extensive experiments are conducted in various benchmark datasets, and the results demonstrate the effectiveness of the proposed approach.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.