Papers
Topics
Authors
Recent
2000 character limit reached

GraphTune: A Learning-based Graph Generative Model with Tunable Structural Features (2201.11494v3)

Published 27 Jan 2022 in cs.LG and cs.NI

Abstract: Generative models for graphs have been actively studied for decades, and they have a wide range of applications. Recently, learning-based graph generation that reproduces real-world graphs has been attracting the attention of many researchers. Although several generative models that utilize modern machine learning technologies have been proposed, conditional generation of general graphs has been less explored in the field. In this paper, we propose a generative model that allows us to tune the value of a global-level structural feature as a condition. Our model, called GraphTune, makes it possible to tune the value of any structural feature of generated graphs using Long Short Term Memory (LSTM) and a Conditional Variational AutoEncoder (CVAE). We performed comparative evaluations of GraphTune and conventional models on a real graph dataset. The evaluations show that GraphTune makes it possible to more clearly tune the value of a global-level structural feature better than conventional models.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.